These Six Sigma steps are in the C2C Process.

1. **Understanding Your Customer's Needs** - The cornerstone for every successful project. The "Enhanced" Kano Model illustrates three critical types of needs that must be delivered to the customer: 1) Basic Needs - Are expected needs, yet unspoken by the customers. 2) Performance Needs - Are the spoken and consciously evaluated needs that customers will talk about. 3) Excitement Needs - Are the Innovations, "WOW's", & neat surprises.

2. **Design FMEA** - An "uncover" the Voice of the Customer (VOC) and truly understand the "Mind" of the Customer (MOC).

3. **Product Function Analysis** - A well documented and prioritized list of requirements helps keep them current and visible. This (eQFD "shortcut") uses specific criteria to help decide how each requirement will be "deployed". This also keeps a "House of Quality" from turning into a "Mansion of Quality".

4. **Process Metrics & Goals** - It's very hard to improve things that can't be measured. The QFD "House of Quality" is an excellent "tool" to help develop metrics and specific goals for the customer's "fuzzy" requirements.

5. **Product Function Analysis** - "A well described problem is a problem 80%-solved." Functions are the most important aspect of any engineering system. Here, we describe in terms of functions, our engineering system's, it's problems, and perform a comprehensive "Value" Analysis.

6. **Design & Process FMEA** - An (eFMEA) (Failure Modes & Effects Analysis) is a proactive systematic approach used by Product & Process Engineers to help assure your product and processes perform their intended functions over their entire life span. A tabular method is applied to analyze potential failure modes, their effects, and develop an action plan to ensure your product meets these goals.

7. **Process Function Analysis** - "A problem well described is a problem 80%-solved." Process functions are the most important aspect of manufacturing design. Here we describe in terms of functions, our manufacturing process, its problems, and perform an operational "Value" Analysis.

8. **Detailed Process Design** - This step integrates DFM principles & Taguchi's Methods for "Robust Designs" with QFD to detail critical Design Characteristics with "optimized" target values to achieve a "Robust Design" that is easy to manufacture.

9. **Process Function Analysis** - "A problem well described is a problem 80%-solved." Process functions are the most important aspect of manufacturing design. Here we describe in terms of functions, our manufacturing process, its problems, and perform an operational "Value" Analysis.

10. **Detailed Process Design** - This step integrates Dr. Taguchi's philosophy of "Robustness" with QFD to detail the critical Design Parameters and "optimized" target values to achieve a "Robust Process".

11. **Production Control** - These are the "shop floor" activities that are needed in order to maintain capable processes and approach Six Sigma "capability". These activities help to prevent reverting back to the "old way".

12. **Kaizen** - Methods to encourage gradual, structured, and continuous improvement for internal and external customers through the elimination of waste. People work together in making small continuous improvements without large capital investments.